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Abstract—Reservoir Computing, a relatively new approach
to machine learning, utilizes untrained Recurrent Neural Nets
as a reservoir of dynamics to preprocess some temporal task,
making it separable with a linear readout layer Originating
from the study of Liquid State Machines and Echo State
Networks, potentially any sparsely connected network containing
feedforward and feedback loops can be a reservoir. Random
Boolean Networks (RBN) is such a sparsely connected network
that may be suitable for Reservoir Computing.

In this paper we investigate the dynamics, performance, and
viability of RBNs used for Reservoir Computing (RRC). A
system to investigate these properties is implemented, and its
correctness is validated by comparing its results with those of
comparable studies. The chosen reproduced experiments result
in the following findings: The more chaotic the phase of an
RBN is, the higher its required input connectivity. The value of
K which provides optimal computational power is found to lie
closer to K = 3 when using homogenous networks, as opposed
to the heterogenous optimal 〈K〉 = 2. A relationship between
Computational Capability and actual reservoir performance
seems to exist.

Finally, we find a one-to-many mapping between the readout
layer in an already-trained RRC system and different RBN
reservoirs, with there being a seemingly large set of interchange-
able reservoirs for each readout layer. This makes the potential
use of a smaller generative genome for evolving RRC systems
interesting. Even though it hits fewer points in the RBN fitness
landscape than the fixed genome used in this paper, a large
amount of these points are still usable for each instance of a
working readout layer.

I. INTRODUCTION

Reservoir Computing (RC) is a form of machine learning
that sprang out from the study of recurrent neural networks
(RNNs). In short, it utilizes the dynamics of some complex
system dubbed a ’reservoir’ to preprocess a timeseries prob-
lem, transforming it from a temporal to a spacial one in
the reservoir, making it then separable with a usually simple
readout layer.

In this paper the dynamics of Reservoir Computing systems
where the reservoir is a Random Boolean Network (RBN) [5]
is investigated. In [14] RBN Reservoir Computing systems
(RRC) were investigated, and found to be a fruitful approach.
A computational system consisting of such simple nodes
with inherent emergent properties are an interesting field of
study as an alternative to classical computation. The study of
such networks can also pave the way for selecting physical
substrates as reservoirs.

First we create a working RBN Reservoir Computing system
in the Python programming language, reproducing chosen
experiments from [14]. These include finding the optimal
input connectivity (L) and internal connectivity K, as well
as testing their measure of Computational Capability against
actual reservoir performance.

Next we investigate whether the readout layer of a working
RRC system can be re-used with other RBN-reservoirs than
the one it was originally trained on, and still stay accurate on
the original classification task. These functionally equivalent
reservoirs, if any, will be evolved through the use of a genetic
algorithm (GA).

Finally we look at the dynamics and characteristics of these
groups of RBN Reservoirs, attempting to find any similarities
that made them exploitable for computation.

II. BACKGROUND

A. A Brief Introduction to Reservoir Computing

Recurrent Neural Networks, as opposed to feed-forward
neural networks, are notoriously time consuming and difficult
to train. This is due to feedback from the recurrent connections
during the training process, allowing small topology changes
to drastically change a network’s position in the fitness land-
scape.

It was therefore proposed both in [7] (as Echo State Net-
works, or ESN) and [12] (as Liquid State Machines, or LSM)
to separate the RNN into two parts, the untrained reccurrent
reservoir, and the trained readout layer. Both of these methods
have been unified into the field of Reservoir Computing, now
focusing on the separate training and evolution of the recurrent
and readout parts [10].

Exiting applications of Reservoir Computing include speech
and handwriting recognition, as well as controlling robotics
[10].

B. Alternatives to classical reservoirs

Are there other types of complex systems that can be used
as reservoirs? What properties must these reservoirs have to
be able to solve problems?

Complex networks similar to the sparsely connected RNNs
used ESN and LSM systems include Cellular Automata and
Random Boolean Networks.
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Figure 1. An example homogenous RBN with N = 3,K = 2, P = 0.5.

Cellular Automata are regular grids of cells containing some
state, each cell connected to its neighbors in the grid. Cells
then update in lockstep according to some shared transition
table, creating a new generation. RBNs can be seen upon as an
abstraction over CAs again, allowing for nonlocal neighbors,
and will be introduced in depth in II-C.

Both models are simple, and can be implemented in soft-
ware, hardware (FPGAs), and in materio [11] (for evolving
CAs in materio, see [2]). This computational paradigm is
known as Cellular Computing, and provides a potentially
powerful alternative to classical computers, leveraging extreme
parallelism, simple components and local state [13].

The ’Water bucket’ paper investigated the use of an actual
bucket of water as a reservoir [3], successfully recognizing
patterns and achieving decent performance at that. The RBN
Reservoir approach has also been found to be viable [14] .

C. A Brief Introduction to Boolean Networks

Random Boolean Networks, also known as Kaffman net-
works, were originally developed as a model of gene regu-
latory networks [8], the complex system that regulates how
genes in multicellular organisms interact with each other. The
model requires no assumptions about the inner workings of
the actual nodes, which allows it to model phenomena where
the exact internal workings of the system may be unknown.

The simplification of a system to a boolean model doesn’t
pose a problem, as any multi-valued network can be trans-
formed to a corresponding binary one.

A RBN is usually described by its number of nodes N
and the in-degree K of the nodes, that is, how many nodes
each node depends on (also known as its ancestors). RBNs
can have both homogenous and heterogenous in-degrees. In
heterogenous networks, one usually describes the average
connectivity 〈K〉 instead.

Each node can have a state of zero or one. The next state
of the node is solely determined by the current combination
of states of its ancestors. Each combination leads to a new
state of zero or one, with the probability given by a binomial
distribution usually having 〈P 〉 = 0.5. Figure 1 visualizes a
homogenous RBN with N = 3,K = 2, P = 0.5.

In the simplest RBN updating scheme, all nodes update in
lockstep. This is known as the Classical RBN updating scheme
(CRBN). The states of the RBN at the next timestep t + 1
therefore only depend on the states at the previous timestep
t. A criticism of the classical model is that gene regulation
networks are updating continiously, as opposed to in lockstep.c

(a) Ordered phase, K=1 (b) Critical phase, K=2 (c) Chaotic phase, K=3

Figure 2. Trajectories through state-space for RBNs with N = 30,K =
[1, 2, 3], visualizing the different phases. Time flows downwards the lattice,
while RBN states are shown along the X-axis. with the network states plotted
horizontally, and time flowing downwards. Images created with the developed
RBN-simulator.

There are therefore a number of alternate updating schemes
which can be categorized by whether they are deterministic or
nondeterministic, as well as synchronous and asynchronous.

The dynamics of an RBN can be categorized as being in
either the ordered, critical, or chaotic phase. These phases can
be identified by how large a part of the network state is able to
change over time, whether similar states tend to converge or
diverge over time, and the networks resistance to perturbations
(outside changes to the network).

One way to obtain these phases analytically is by comparing
the resulting states of two identical RBNs where one is subject
to some perturbation [5]. For visual identification, we plot the
states of the RBN in a square lattice, with the network states
plotted horizontally, and time flowing downwards. A node is
drawn as white if its state is one, black otherwise. The phases
are visualized in Figure 2.

In general, RBNs in the critical phase are the most in-
teresting. These are seemingly able to support information
transmission, storage and modification, all capacities required
for computation [9]. Critical systems are found on the edge
of chaos, on the phase transition between ordered and chaotic
networks [5]. For RBNs with 〈p〉 = 0.5, critical dynamics are
usually found at 〈K〉 = 2 [5], although one could still find
networks with such dynamics for different values of 〈K〉.

A thorough introduction to the field of RBNs is available
in [5].

D. RBN Reservoir systems

How does one adapt a RBN for use as a reservoir in a RBN-
RC device? RBNs aren’t usually designed to take external
input. We do however, have the concept of perturbation, the
external flipping of bits in the network’s state, transition tables
or edges. This can be utilized to create RBNs that take input,
by continiously perturbing the RBN nodes by the bits of the
input sequence.

Questions that follow are how many bits should the network
consume at a time, how many of the network nodes should be
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Figure 3. RBN-Reservoir system with I = 1, L = 2,K = 2, N = 5. The
reservoir transforms the problem from a temporal one to a multidimentional
spatial one. The readout layer the performs some kind of learning on the
reservoir states against the expected output for the current task.

(a) Input

(b) Correct output

Figure 4. The first 30 elements of a Temporal Parity task with [n = 3, t = 0].
A one is visualized as white, while a zero is black. We see that correct output
at time i is equal to there being an odd number of 1s in inputs [i, i−1, i−2]

perturbed by the input at each timestep, and what dynamics
must such a reservoir have to allow for the computation of
interesting problems?

1) A working system: In [14] the authors create and analyze
functioning RBN-RC systems. These RBN-RC systems have
heterogenous connectivity, consume one bit of input at each
timestep (I = 1), perturbing L of the N nodes in the process.
The readout layer can be any node performing some kind of
regression of the reservoir state against expected outout for
the current task, e.g. linear regression. Such a setup is shown
in Figure 3.

2) Tasks: To measure the real-life performance and accu-
racy of the RBN Reservoir systems, two tasks were introduced:
Temporal Density and Temporal Parity [14]. Both require the
reservoir to be able to retain information for a sliding window
of size n, offset by some value t, back through the input
stream. The Temporal Parity task requires us to determine if
there were an odd number of ones in the sliding window,
the Temporal Density task to determine whether there were
a majority of ones. The Former is visualized in figure 4, and
will be used to benchmark the reservoirs created later in this
paper.

3) Computational capability: For an RBN-reservoir to per-
form well at computational tasks, it must be able to both forget
past perturbations and keep two input streams that have begun
converging separated [1].

These two properties are coined fading memory and sepa-
ration property, and can be measured [14] as follows.

Create two equal input streams #1 and #2 of length T . If

measuring fading memory, flip the first bit in stream #2. If
measuring separation property, flip all bits up to bit T − t in
stream #2 (t being the required depth of separation). For both
input streams, reset reservoir state, perturb the reservoir with
the input stream, and store the final state. The score of the
measure is then defined as the normalized hamming distance
between the resulting states. The computational capability ∆
of an RBN-reservoir is then defined as

∆Tt = separation_propertyTt − fading_memoryT (1)

Analyzing different RBN-reservoirs with this metric [14],
a high ∆ is found to correlate with critical connectivity
(〈K〉 = 2). For all RBN-reservoirs, ∆ drops when increasing
the required separation t, and is maximized when one doesn’t
have to remember anything at all (t = 0).

4) Optimal perturbance: It is found that the optimal
amount of reservoir perturbance, adjustable by the number
of connections between the input layer and the reservoir,
depends on both the task size, how many steps in time
are required to be remembered, and the dynamics of the
reservoir. Chaotic reservoirs require few input connections to
be able to properly spread information, but perform poorly on
larger tasks due to past perturbations still floating around the
reservoir. Ordered reservoirs quickly forget past perturbations,
allowing some success for larger tasks, but their inability to
remember past perturbations renders them useless for many
tasks. Critical reservoirs require connectivity somewhere in
the middle. Able to forget as well as remember, they perform
accurately independent of task size.

E. Genetic Algorithms
A genetic algorithm is an advanced probabilistic search

method using operations inspired by natural evolution to
traverse the solution space of the problem. It mimics natural
evolution by creating a population of children where some will
grow up to adults, the fittest of which reproduce the most. The
newly created offspring receives a genome derived from its
parents, using a combination of genome crossover and random
mutations to push the search forward.

Good choices for genome representations and fitness func-
tions make GAs excellent for finding solutions to optimisation
problems. Good hyperparameters (parameters for the GA run
itself, i.e. genome crossover rate, adult and child population
sizes) may differ widely across problem domains and genome
representations. If an certain GA instantiation performs well
in some domain, it must necessarily perform worse on others
as proven by the No Free Lunch Theorem [16].

III. METHOD

To verify the viability of RBNs in RC systems, a functioning
RRC system has to be created. Being able to reproduce results
from [14] will lend credibility to the approach presented in
this paper. The Computational Capability measure presented
therein will be used to analyze our RRC systems.

Second, we wish to investigate the potential many-to-one
relationship betwen reservoirs and previously trained read-
out layers, evolving these functionally equivalent reservoirs



Dataset

Input layer RBN Reservoir Readout layer

Classification

RRC

Figure 5. Block diagram of the RRC processing a dataset.

through artificial evolution. These sets of interchangeable
reservoirs may share similar attributes and Computational
Capability, and will be analyzed. If such a mapping exists
it may tell us something about how large a part of the RBN
fitness landscape is usable as a reservoir, and how difficult it
is to reach these points. A smaller generative genome could
then be used instead of the fixed one presented in this paper,
potentially guided towards the attributes we find useful.

The following systems have been implemented to investi-
gate the stated questions:

• An RBN simulator
• Procedures for analyzing and visualizing RBNs
• Procedures for creating classification tasks
• An RBN Reservoir Computing system using:

– The aforementioned RBN simulator as a reservoir
– The ridge regression node from the Oger RC toolkit

[15] as readout layer
– The Python Modular Toolkit for Data Processing

[17] for glue and training of the RRC system.
• A system for evolving RBNs given certain constraints,

using a genetic algorithm based on the one used in [2].
The codebase is available on GitHub [4] under a soon-to-be

permissive licence.

A. Measuring Computational Capability

We will be using the computational complexity measure
introduced in II-D3 to analyze the created RBNs. This measure
is parameterized over both input stream length T and the
required depth of separation t. To make this an useful measure
when comparing against reservoir accuracy on a specific task,
we will chose values of T similar to the length and t equal to
the required memory of that task.

B. The creation and training of a functioning RRC system

The final RRC system is shown as a block diagram in Figure
5, and the actual network topology is equivalent to the one in
Figure 3.

1) testing: To verify that RBN simulation is working, a
RBN is created randomly, initial state set to all zeros, and
ran. The results are visualized in Figure 6a. We see that the
RBN exhibits stable dynamics, and enters into an attractor
around t = 15. In Figure 6b we continiously perturb the RBN
with the input stream from the Temporal Parity task visualized
in Figure 4. In the perturbed case, the state trajectory is
continiously changed, preventing the RBN from settling into

(a) Unperturbed (b) Perturbed

Figure 6. The same RBN (N = 100,K = 2, P = 0.5, L = 50) shown both
perturbed and unperturbed. The boolean states of the RBN are plotted along
the X-axis, with time flowing downwards.

an attractor. Interestingly enough, there seems to be a visual
similarity between the two cases. Such a pattern is sure to
dissapear with a RBN in the chaotic phase.

This erratic pattern of state transitions is then fed into
the readout layer, which is then tasked with finding a linear
combination of the RBN states that results in the expected
output for the given task.

2) Training: To train the RRC system we require a number
of training datasets, as well as different testing datasets to
test the trained system. We will use the datasets described in
section II-D.

We then either create a new RBN (initialize it randomly), or
load a previously created RBN from disk. For each bit of input
in each dataset, we perturb the input-connected nodes in the
RBN. After each perturbance, the RBN is ran synchronously
(CRBN mode) for one timestep. The resulting RBN states are
collected, and after the entire dataset is processed, forwarded
to the readout layer.

To find a suitable mapping from the set of reservoir states
and the correct input classification, ridge regression [6] is used.
This version of least squares regression is more accurate when
faced with input colinearities, as well as always being at least
as accurate as ordinary least squares.

This process is repeated for all the datasets, and the final
regression parameters are chosen as a combination of the
parameters obtained for each individual dataset. Finally we
measure the normalized accuracy of the trained reservoir on
the test dataset, defined as

Accuracy = 1− sum(actual_output 6= expected_output)
len(correct_output)

(2)
. If the RRC system achieves a high accuracy on an interesting
task, it will be stored for further research.

C. The evolving of functionally equivalent RBN reservoirs for
existing readout layers

To investigate the potential many-to-one mapping between
RBN-reservoirs and readout layers, a Genetic Algorithm (sec-
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Figure 7. The direct-encoded genotype used for evolving RBNs, shown here
for an RBN with N = 3,K = 2.

Table I
GA HYPERPARAMETERS

Children pool size 40
Adult pool size 40
Fitness satisfaction threshold 0.98
maximum generations 200
Adult selection Generational mixing
Parent selection Tournament selection(K=8)
Genome crossover Per component crossover (p=0.5)
Genome mutation Per genome component mutation (p=0.1)

tion II-E) will be used. A fixed test dataset and readout layer
for fitness evaluation will be used.

1) Genotype and phenotype representation: We let the
genotype be a direct encoding of the corresponding RBN
graph. Such an encoding is significantly larger than a gen-
erative encoding, but less complex as well as able to generate
all individuals in the fitness landscape.

Each node needs to represent whether it is connected to
the input node, who its neighbors are, and what its transition
rule is. As we only look at homogenous RBNs, we can use a
fixed-length genome with

genome_length = n_nodes · (connectivity + 2) (3)

To further simplify GA implementation, we let all
symbols in the genome take a value in the range
[0,max_required_in_genome). The actual symbol values
are then computed modulo the largest actual value they could
take on (2 for input connectivity, n_nodes for neighbors,
22

n_nodes

for transition rules).
The final genome is shown in figure 7. Note that this

representation sets no limitations on input connectivity or
uniqueness of neighbors.

2) Fitness function: Each GA run is parameterized with an
already-trained and accurate readout layer (separated from its
RBN-reservoir), as well as a single test dataset of the same
origins as the dataset used for training the readout layer. After
converting each genotype to its corresponding phenotype, the
resulting RBN is connected to the readout-layer and fed with
the fixed test dataset. The accuracy obtained, as calculated in
formula 2, is used as the fitness of the phenotype.

3) GA hyperparameters: The hyperparameters for the GA
are presented in table I.

Adult selection is simple generational mixing, selecting the
best 40 specimens from the combined children and adult
populations. Per component crossover will with a probability
p either pass through the entire genome from the left parent,
or for each component chose either the left or right parents
value with a probability 0.5. Per genome component mutation

Table II
TASK PARAMETERS

Task type Temporal Parity
Num. datasets 10
Dataset length 200
N (window size) 3 and 5
t (offset) 0

Table III
RBN COMBINATIONS

N (nodes) 100
K (connectivity) 1, 2, 3
L (input connectivity) 0, 10, ..., 100
Temporal parity N = 3, 5

will reroll each genome component with probability p. This
value is set relatively high (0.1) due to experiments showing
a much faster convergence rate fr this domain than with the
initial chosen value of 0.01.

IV. EXPERIMENTS

A. Creating functioning RBN reservoir systems

In [14] the authors find a relationship between compu-
tational capability and performance, that certain values of
L give the best reservoir performance, and that RBNs with
connectivity 〈K〉 = 2 should outperform other connectivities.
To test these assertions, we must create and benchmark a
number of functioning RBN reservoir systems, noting their
accuracy on the chosen task as well as their computational
capability. Plotting these values against each other will shed
light on whether their claims strike true.

We will be using two versions of the temporal parity task
(as specified in table II) to measure reservoir performance. The
temporal parity task is chosen over temporal density as it is
the more difficult task (shown in [14]), presumably resulting
in more interesting and rich resevoirs.

Computational Capability will be measured with T = 100
for both versions of the task, but the required memory t equal
to the tasks window size N .

As the number of different RBNs is oppressively large,
( 22

K
N !

(N−K)! )
N [5], we therefore create 30 random specimens

for each combination of the RBN parameters displayed in
table III. This results in 300 samples for each RBN N-K
combination for each task. Note that the created RBNs are
of homogenous connectivity, as opposed to the heterogenous
connectivity used [14].

B. Evolving functionally equivalent RBN reservoirs for exist-
ing readout layers

We use the genetic algorithm presented in section to evolve
functionally equivalent RBNs (hyperparameters as in table I).

We now pick 5 RBN reservoir systems, chosen for their >
99.5% accuracy on the Temporal Parity task shown in table IV,
and store their trained readout layers. All 5 RBNs have N =
100,K = 2, three of the RBNs having an input connectivity
of L = 50, the remaining two L = 70. They will from now on



Table IV
GA TASK PARAMETERS

Task type Temporal Parity
Num. datasets 10
Dataset length 200
N (window size) 3
t (offset) 0

be referred to as L50#1, L50#2, L50#3, L70#1, and L70#2.
This will allow us to measure if the functionally equivalent
reservoirs for the readout layers trained on reservoirs with L =
50 differ from the ones with L = 70.

For each readout layer we create a new instance of the
Temporal Parity task used to train it originally. We then run
the GA 30 times with this readout layer–dataset combination,
sampling only the best specimen from each final generation.
This to keep our influence from evolutionary inbreeding to a
minimum.

V. RESULTS

A. Creating functioning RBN reservoir systems

Figures 8 and 9 contains plots of input connectivity against
accuracy, as well as Computational Capability against accuracy
for the sampled populations (for Temporal Parity with N = 3
and N = 5 respectively).

Each plot contains a total of 300 samples, 30 for each input
connectivity in the input connectivity boxplots.

1) Temporal Parity N = 3: Almost no reservoirs with
K = 1 (fig. 8a) are able to solve the task adequately,
almost all samples having a worse accuracy than 0.5. In
the corresponding Computational Capability plot (fig. 8d), all
samples have a low CC mapping to a correspondingly low
accuracy. There are many reservoirs able to complete the task
for K = 2 (fig. 8b). The mean population fitness peaks at
input connectivities 40–50, giving a firm suggestion to where
the optimal connectivity is located. In the corresponding CC
plot (fig. 8e), an increase in CC tends to correlate with an
increase in mean accuracy.

The mean fitness is even higher for the reservoirs with K =
3 (fig. 8b), peaking at the input connectivities of 50–60. The
corresponding CC-Accuracy plot in fig. 8f has its distribution
skewed upwards towards the right.

2) Temporal Parity N = 5: Temporal Parity with N = 5
is a considerably more difficult task for RBNs of size 100, as
shown in figure 9. Again reservoirs with K = 1 (fig. 9a) are
unable to complete the task, the abysmal CC-Accuracy plot
of fig. 9d telling the same story. Reservoirs with K = 2 tell
the same story (fig. 9b). There is but a single well-performing
outlier at the input connectivity of 50.

The mean fitness is considerably higher for K = 3 (fig. 9c),
still having its best reservoirs at the input connectivity of 50-
60. The CC plot (fig. 9f) contains considerable more samples
with higher CC.

B. Evolving functionally equivalent RBN reservoirs for exist-
ing readout layers

Out of the total 30 · 5 = 150 evolved RBNs, all except five
achieved an accuracy of at least 99%. In Figure 10 we see
plots of the 30 termination generations for each of the five
readout layers. The worst accuracy of 78% was achieved in
the GA run of L50#3 which timed out at generation 200.

The fitness plots for one of the GA runs of L50#3 is shown
in Figure 11. This kind of fitness distribution, where the
third quantile peaks at roughly 70% accuracy with the best
individual being found not gradually, but with a sudden jump,
is representative for most of the GA runs performed.

The input connectivity of the evolved reservoirs is shown in
figure 12. Observe that the median of the distributions seem
largely independent of the input connectivity of the original
reservoir, the majority of its functionally equivalent RBNs
centered around L = 50.

Last we look at the computational capabilities of the evolved
RBNs against the CC of the original reservoirs in figure 13.
There does not seem to be a strong relationship betwen the
original CC values and the evolved ones. The distribution of
L70#2 is shifted towards 0.0, but the distribution of L70#1 is
not, even though its value is close to zero as well.

If one looks at the CC-Accuracy plots of Figure 8e, these
distributions don’t look that out of place. They might simply be
a representation of where most reservoirs with N = 100,K =
2, L = 〈50〉 lie.

VI. DISCUSSION

A. Creating functioning RBN reservoir systems

1) Temporal Parity with N = 3: There is an abundance
of well-performing reservoirs for K = 2 and K = 3.
Reservoirs with higher connectivity have their fitnesses peak
at higher values of input connectivity. This is in line with the
expectations from [14] described in section II-D4. The more
chaotic the dynamics of the reservoir, the more it has to be
perturbed to retain the input information.

2) Temporal Parity with N = 5: The distribution of well-
performing reservoirs is shifted heavily towards K = 3.
There are single outliers that perform well for K = 2, but
the accuracy medians are considerably lower than for the
reservoirs with K = 3.

Comparing the observed performance against the perfor-
mace of the RRC systems benchmarked in [14] on the same
task, one sees the same drop in performance from Temporal
Parity with N = 3 to N = 5.

3) Computational Capability: Comparing the Computa-
tional Capability plots for both tasks (Figures 8 and 9), one
observes that the individuals with a higher Computational
Capability have a tendency to be shifted towards higher accu-
racies. The lower accuracy bounds are increased as compared
to the samples located at .0CC. This indicates a positive cor-
relation between Computational Capability and performance,
again in line with the expectations from [14]. One might be
quick to assume that reservoirs achieving no higher than a
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Figure 8. Plots for Temporal Parity with N = 3. Figures 8a–8c plot the accuracies of the sampled RBNs against their input connectivity, for K=1–3
respectively. Figures 8d–8f plot the accuracy of the previous figures against their Computational Capability (T = 100, t = 3).
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(c) K=3
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(d) K=1
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(e) K=2
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(f) K=3

Figure 9. Plots for Temporal Parity with N = 5. Figures 9a–9c plot the accuracies of the sampled RBNs against their input connectivity, for K=1–3
respectively. Figures 9d–9f plot the accuracy of the previous figures against their Computational Capability (T = 100, t = 5).
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Figure 10. Termination generations for the evolution of functionally equvi-
valent RBNs.
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Figure 11. Fitness of the GA population at each generation. The mean stays
relatively close to 50% accuracy the whole time, althoug the third quartile
pushes upwards towards the end. Due to only storing max fitness and fitness
quartiles during simulation, the whiskers represent the best fitness as opposed
to the 98th percentile.

0.5 accuracy perform no better than the tossing of a coin.
There is however no guarantee that the distribution of correct
classifications follow a binomial model with p = 0.5.

4) Optimal Connectivity: When comparing general per-
formance across K values on the two tasks, the optimal
connectivitity seems to be closer to K = 3 than K = 2. As
described in section II-C, critical dynamics for heterogenous
networks should be the most frequent at an average 〈K〉 = 2.
Such networks can therefore contain subgraphs of both higher
and lower connectivity, while keeping the average connectivity
the same. This disparity can therefore be explained by the
fact that an homogenous RBN with K = 3 can emulate an
RBN with lower connectivity by having two or more in-edges
from the same ancestor node, while an homogenous RBN with
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Figure 12. Connectivity for evolved RBNS. Observe that the connectivity
distribution of the evolved RBNs is centered heaviliy around 50 regardless of
the original input connectivity.
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Figure 13. Computational capabilities for the evolved RBNs.

K = 2 cannot emulate a higher-connectivity one.

B. Evolving functionally equivalent RBN reservoirs for exist-
ing readout layers

There are a great number of functionally equivalent reser-
voirs for each functioning readout layer, and the Genetic
Algorithm finds them efficiently. Sadly, a tight correlation
between the properties of the RBN from the original RRC
system, and RBNs evolved against its readout layer seem
spurious at best. In fact, the connectivity distributions of
Figure 12 and computational capabilities of Figure 13 seem
much more representative of the general RBN population, as
shown in Figure 8b. This indicates that while there are many
compatible reservoirs for a given readout layer, the distribution
of the reservoirs are likely the same as the distribution of
reservoirs with the same connectivity in general.



It should be noted that during earlier simulations with a
per-component mutation rate of 1% as opposed to the 10%
actually used, the mean of the fitness distribution during GA
runs would be much closer to the best specimens, but would
frequently get stuck in a local maxima with fitness around
0.77, eventually timing out. This suggests that a lack of genetic
variety was the culprit, as it’s limited what genome crossover
can accomplish alone. Increasing the rate to 10% drastically
increased convergence rates (as shown in Figure 10, even
though the population median stays close to 0.5 for the entire
run.

Finally, this implies a one-to-many mapping between reser-
voirs and readout layers, as there are multiple compatible
reservoirs for each previously trained readout layer. This
makes the potential use of a smaller generative genome for
evolving RRC systems interesting. Even though it hits fewer
points in the RBN fitness landscape than the fixed genome
used in this paper, a large amount of these points are still
usable for each instance of a working readout layer.

VII. FUTURE WORK

A. Required Complexity of Tasks

Only RBN Reservoirs of size N = 100 are looked at
in this paper, and in [14] reservoirs of size N = 500 are
used. Neither might be the optimal size for an RBN, with the
best dynamics and problem accuracies potentially obtained at
different reservoir sizes. If it turns out that a given task can
be solved just as easily for a reservoir of size N = 50 as
N = 500 one might as well use the smaller reservoir, saving
bits, hardware, and the environment in one go. If one can
obtain the relationship betwen how complex a reservoir has to
be to solve a given task, one could predict i.e. how large the
water bucket reservoir presented in [3] actually has to be.

B. Generative genomes

A fixed-representation genome was used in this paper to
evolve functionally equivalent reservoirs, with the fitness func-
tion requiring the reservoirs to adapt to a given readout layer.
Alternatively one could evolve RBNs towards the dynamics
known to be useful for computation. This can be done with a
generative genome, where the genome defines how the graph
grows to its adult form, as opposed to describing the edges
and nodes of the adult RBN directly.

C. Scaling up Simulation

Software simulations of RBNs and the training of the
corresponding RRC systems can be rather slow. Therefore
it might be more efficient to implement the RRC system in
an FPGA, or as an accellerated task on a supercomputer or
graphics card.

VIII. CONCLUSION

A functioning RBN Reservoir Computing system was im-
plemented, and its results validated against and found in
accordance with those from a previous publication: A positive
correlation between the computational capability of a reservoir

and its actual performance is found. The optimal connectivity
for homogenous reservoirs is found to be K = 3 as opposed
to 〈K〉 = 2 for heterogenous reservoirs. Finally, the required
input connectivity is found to rise with the presence of chaotic
dynamics in the reservoir.

A genetic algorithm is created for evolving functionally
equivalent reservoirs for use under the same readout layer
in RRC systems. There turns out to be a great number of
functionally equivalent reservoirs, and finding them is easy
and efficient. A many-to-one mapping between reservoirs and
allready trained readout layers is therefore present. Their
dynamics and properties are however more representative of
the general reservoir population than the original reservoir.
This makes the potential use of a smaller generative genome
for evolving RRC systems interesting. Even though it hits
fewer points in the RBN fitness landscape than the fixed
genome used in this paper, a large amount of these points
are still usable for each instance of a working readout layer.

The use of the relatively simple Random Boolean Network
in Reservoir Computing is a relatively new approach, but
one found fruitful. The implemented RRC and GA systems
are generic and reusable and verified to work according to
specification, opening up for further research within the field
during the authors master’s thesis.
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[10] Mantas Lukoševičius, Herbert Jaeger, and Benjamin
Schrauwen. “Reservoir computing trends”. In: KI-
Künstliche Intelligenz 26.4 (2012), pp. 365–371.



[11] Julian F Miller and Keith Downing. “Evolution in
materio: Looking beyond the silicon box”. In: Evolvable
Hardware, 2002. Proceedings. NASA/DoD Conference
on. IEEE. 2002, pp. 167–176.

[12] Thomas Natschläger, Wolfgang Maass, and Henry
Markram. “The" liquid computer": A novel strategy for
real-time computing on time series”. In: Special issue on
Foundations of Information Processing of TELEMATIK
8.LNMC-ARTICLE-2002-005 (2002), pp. 39–43.

[13] Moshe Sipper. “The emergence of cellular computing”.
In: Computer 32.7 (1999), pp. 18–26.

[14] David Snyder, Alireza Goudarzi, and Christof Teuscher.
“Computational capabilities of random automata net-
works for reservoir computing”. In: Physical Review E
87.4 (2013), p. 042808.

[15] David Verstraeten et al. “Oger: modular learning ar-
chitectures for large-scale sequential processing”. In:
The Journal of Machine Learning Research 13.1 (2012),
pp. 2995–2998.

[16] David H Wolpert and William G Macready. “No free
lunch theorems for optimization”. In: Evolutionary
Computation, IEEE Transactions on 1.1 (1997), pp. 67–
82.

[17] Tiziano Zito et al. “Modular toolkit for Data Process-
ing (MDP): a Python data processing framework”. In:
Frontiers in neuroinformatics 2 (2008).


